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NOTATION

ao,a1,a3 Points in the { plane corresponding to
the end of foill, and the end points of
upper and lower cavity respectively

c Chord length of foill

Cp Lift coefficient defined by [ 18]

Cp Drag coefficient defined by [ 16]

d Distance between leading edges of
adjacent foils in the cascade

k Strength of a singularity at the leading
edge

L Cavity length

P ,PC Pressure at x = -» and on the cavity

- respectively
Q A quantity defined in [5]

9,4ps97q0% 5925959,  Speed defined 1in 197, and [21]

U,V X,y components of perturbation velocity
respectively

U Speed at X = -w

Wo= @ + iy Complex potential

Z =X + yi Coordinate in the physical plane

0% Stagger angle defined in Figure 1

e,eI,eTI,el,ez,e 8, Flow angle defined in [20] and [22]

c Cavitation number defined by [ 1]

p Density of water
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Constants defined in [8]

Coordinates in the transformed plane

Quantity correct up to nth order
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INTRODUCTION

When the hub to diameter ratio of axial flow pumps is
large, the hydrodynamics of such machines may be approximated
by that of two-dimensional cascades. The recent development
of high rotational speed rocket pumps necessitates the study

of supercavitating cascades.

Both linear [Acosta (1960), Cohen and Sutherland (1958)]
and nonlinear [Betz and Petersohn (1931)] theories for flat
plate cascades with infinitely long cavities have been derived,
For either large solidities, large stagger angles, or large
angles of attack, an important discrepancy is known to exist

between the linear and the nonlinear theories.

For cambered folls, the exact nonlinear theory is quite
complicated to derive since we need the solution of a difficult
nonlinear integral equation. The corresponding case of flat
plates is simpler and has been derived [ Sedov (1965), Jaccbsen
(1964)]. A linearized cascade theory for circular arc foils

with infinite cavities has been given by Acosta (1960).

Recently, a linear cascade theory for constant pressure
camber foils with finite cavities has been solved (Yim 1967).
One of the advantages for the constant pressure camber foils
lies not only in simplifications introduced in application of

the linear theory but also 1n corresponding simplications in

The appropriate nonlinear theory for the cascade characteristics.

In this report, the solution 1s found for the nonlinear problem
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for supercavitating, constant pressure cambered cascades with
finite cavities; the second order solution for the same problem
is found to be simple, so that a second order correction can be
made only from the use of results obtained in the first order
theory. For the mathematical model of the collapse of the cav-
ity, the double spiral vortex model (Tulin 1964) is adopted as
in the case of the linear theory (Yim 1967).

NONLINEAR PROBLEM

We conslder a potential flow through a two-dimensional cas-
cade in the z = x + 1y plane as shown in Figure la with the
stagger angle vy and the solidity c¢/d. A foll is represented by
OAqAO which is unknown a priori. On OA4 the pressure is uniform
or the speed q is constant, from the Bernoulli equation. The
length ofA4AOis small and the pressure there changes continu-
ously from that of OA4 to that of the cavity where the cavita-

tion number ¢ 1s defined as

C
0= —— [1]
ZpU°
P_m : the pressure at x = -
U : the speed at x = -«

the pressure at the cavity.
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From the Bernoulli equation, on the cavity

a
g = < . 1
U2
or
ad
_139—=O+l EQ:\

If we use the double spiral vortex model (Tulin 1964), the pres-
sure on the wake is constant, or the speed is equal to a con-
stant q_ (the speed at x = w) which will be determined from the
conditions, at x = -» and of mass continulity between the inlet

and the outlet of cascades.

We consider the complex potentilal

W iy
T T [3]

e

which has a dimension of length.

Then the complex velocity is

00w wo_a, 4

The cascade in the W/U plane corresponding to that in the physi-
cal (z) plane is shown in Figure 1lb, with the same notations for

points corresponding to those in the physical plane.
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I
The stagger angle of the cascade in the W/U plane is ex-
actly the same as that in the z plane for the following reasons.
In Figure la the flow at x = -e 1s uniform. Suppose 0'D, and

0D, in Figure lb are streamlines from the leading edges of foils.

Thus 1f ¢ (D) = O, then

¥ (D, ') = Ud cos v

If

where the x coordinates of D, and E°° are the same. Then

Because of the periodicity of the flow
?(0) - (D) = @(0") - (D, ")

=]

Therefore
®(0) =®(0') - U4 sin v

This proves that the stagger angle <Y O 0' = .
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"ollowing the streamline theory by Kirchoff and Helmholtz
we consider
Q ‘ q :
= = log ¥ = log = - i6 A
5 b g 5 5]

which 1is an analytic function of W/U in the W/U plane except at
the singularities. From now on we use for convenience W, @, v,
Q, 9, u and v for the same physical quantities divided by U.

For the boundary conditions all the values of log g are given on
¥ = +0, ¢ > 0 and ® = £® corresponding to those in the physical
(z) plane.

To solve this problem, we use a conformal transformation
W=e log\l-¢Ce + e log\l - ¢ e NSy

dp _ 2 cos vy

dg

(7]
1 - 2€ sin v + &%

which is in general used for cascade theory [Acosta (1960),
Cohen and Sutherland (1958), Yim (1967)]. The transformation [6]

transforms all the foill-cavity-wake in the W plane onto the real

axis of ( plane with branch points at ¢ = el(w/E-y)

C = w ei(’n'/‘E—ry)

and
as shown in Figure lc with the same notatlon as
in the W plane for the corresponding points. The boundary con-

ditions in the { plane are as follows
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log 9 = A1 = log KO on 0>8 > —g,

Ay = X
log q = Ag + -* 2 (8 +a ) 8]
ao-a4
on -as > & > -a
o
-1
log g = Az = 5 log (1 +0)
on -a > § > -ag
o
and on 0< § < a,
log @ =Xz = log g, on a < §

and on -az > §

log g = 0and 6§ =0 at ¢ = e

Thus, all the real part of an analytic function Q 1s given

on the © axis in the W plane, and we have
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Q—>\5+ie°°=—— Re(Q“)\S)dt

Il
|
et
@]
o

SV v L9
where
"1 = A1 - \a
;; =iz - Aa

8 is the exit flow angle at x = « , and

k 1s an arbitrary constant related to the leading
edge condition-

i(m/2-v)

Before applylng the condition at ¢ = e we consider

the continuity condition between the inlet and the outlet of the

, . . . i(w/2-v)
cagscade. If we consider the uniformity of w along z = £« +r € '

in the physical plane it can be easily shown from the mass contir-

ulty

cos vy = a, cos (y +6_)

(=

or B 1
® = cos 8_ - sin 6_ tan vy

[10]
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Now to apply the condition at ¢ = el(W/g_v) in [ 8], we substi-

, o
tute € = el(w/ V) in the right hand side of [9], put

IR

- 0 {11]

and we compare the real and the imaginary part respectively.

Thus we obtain two simultaneous equations, say [11-al and [11-b].

If we apply the condition of uniformity at x =« or |C| = ®,
. aqtl _
1im |dg =0 [12]

-
-

Thus we have four simultaneous equations for o, a, > 8  and aa

x
with a given set of v, a and ap which are related to a solidity

and the length of cavity. as 1s arbitrary.

For a relation between the W plane and the z plane we use

w(€) = e - Ta¢  dz
or
aw
az(¢) = Q%T(ES' {13]

Thus by an integration of [13] along § axis we obtain

g

%(2,0) =J( Re w(§,0)28 cos vy g [14]
{1 - 28 sin v + &2}

®]
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From here we cbtai

he points on the x axis corresponding to
a, on € axis.

For the foil and cavity shapes, we have

g
Y(g,O) .—.f Im W(@,O)Qg cos vy

{1 - 28 sin v + &%}

dg L15]

O

with the coordination with [14], having € as a parameter.

When we assume k = O, or the case of shock free entry the
drag coefficient can be obtained from

-a
D 1 °IF -~ Folay(z,0)
CD= = -3 3 ag
FpUPc %—U@
0
-2
0
=—l(0+l—)\2) Im w(§,0)28 cosr\/dg
¢ ° {1 - 25 sin v + §3}
o

= -2 (o+1-27)y(-a_,0) [16]

where ¢ 1s the chord length

¢ ='\/x2(—ao,0) + ¥ (-a_,0)
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The solidity 1s
C l 2 2
g = (¥ (-a,0) +y (-a_,0) {17]
The 1i1ift coefficient is
C. = L. l-(G +1 -2 2) x(-a ,0) L18]
L 1P c o o)
2pU C

When we congider the total force Fn normal to the chord c¢ the

normal force coefficient will be

. B
c. = noo_

U e

O |

23
(6 +1 - Mg )

Thus, CN will be known with a given cavitation number o, the

pressure on the foil, and the soliidity.

The contribution from the leading edge singularity can be

obtained through the Blasius theorem (see Yim (1967)).
REMARKS FOR THE NONLINEAR PROBLEM

For the numerical computation, we must calculate the drag
coefficient of the cascade with a given set of parameters: a
stagger angle v, a speed on the foil KO, a cavitation number o
and the solidity c/d. However, first we may give v, XO (or CN),
a_ and a, and solve the four simultaneous equations, (101,

{11-al, [11-b] ana [12] for Oy, dg» Gm and az . Now if we insert
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these values into [14] and [15] we will have a solidity from (171,
the drag coefficient from {16], anad the length of cavity whose
upper part may be different in length from the lower part. If
we want these to be equal, we may have to solve a set of simul-

taneous eqguations which include an integral equation
X(—as,O) = x(al :O)

associated with [14]. The integration of [14] and [15] may re-

quire a numerical scheme,

It is easy to see that 8 has logarithmic singularities at
the end of the cavity whose strengths (coefficients) are dif-
ferent depending on whether we approach from the cavity or from
the wake., If a; = ao this same situation will take place at the
trailing edge of the foil. The speed has only a discontinuity
there. Thus if as = ao the Kutta condition is not satisfied at
fhe trailing edge. However, it does not seem to affect the flow

too much.

A difficulty of a general nonlinear theory for a curved
folil with a finite cavity lies in the fact that the boundary
condition for the foil in the W plane is given as a function of
z rather than of W, which leads only to an integral equation.
Thus it is not a surprise that the constant pressure cambered
foil has as easy a nonlinear solution as that of the constant
slope flat plate foil. The former case gives the real part of

Q, the latter case gives the imaginary part of Q, both constants
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on the foil., Both problems can be treated as a simple Rieman

Hilbert problem (see Muskhelishvili, 1953) in the W plane.
FIRST AND SECOND ORDER PROBLEM

When we expand Q 1in small parameters, the angle of attack o
and the cavitation number as in the method adopted by Tulin (1964),

and Q, 4q, u and v are nondimensionalized with respect to the

speed U at x = -®, and ¢ and ¥ are the quantities already divided
by U,
log 9 = Lagy + a®?qz + ----)
+ [cqa + oqu + -==-]
e = [Oﬂel + azeg + "-"_']
+ 08 + 6FO, + ----]
a b
— 2 P —
or log gq = an + qII + [ 19]
= 08 2 ——
8 a T + BII + [ 20]
where

q, = a1 + (o/a)qa

dpp = Q2 + (O/d)qu [21]
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91 =0, + (O/Q)ea
eII 62 + (o/a)aeb [ 22]
_ 2 3 /. \3
u=1+oaq; +0 (qII +ag /2 - GI /2) + 0(a) [ 23]
_ 3 3
vo=oab. + o (8 + 8.a;) + 0(a) [ 24]
x
P = x + a-j-qI dx + 0(a?) [ 25]
o
x
b=y - af 0_(y,x) dx + 0(c?) [26]
- 2 2 a
a=1+aq; + 0 (qII +ag /2) + 0(a®) [ 271
P, -P . .
- . B |
- @~ 1 =02 + o (2. + 29.°) + 0(dF)  [28]
2P

Thus, in the first order of our problem ¢, ¥, log g and 8
can be replaced by x, y, u-1 = u, and v respectively. The
linear boundary conditions and the solution is exactly the same
whether the problem is originally started from the logarithm
of the complex velocity Q on the complex potential (W) plane as

in the nonlinear formulation or from the complex velocity w on

the physical (z) plane. However, the second order problem formu-

lated in the W plane and that in the z plane are quite differ-

ent in their form. The developments such as [19] - [ 28] prefer
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the formulation of the second order problem in the W plane first
. . . 9
as shown 1n the nonlinear problenm Then qI, qII’ T’ 611

will be given as functions of W = ¢ + iy, which are in general
neat and easy to obtain if the boundary conditions are given as
functions of W too. For the conversion of the independent
variables @, ¥ to z = x + 1y, especially on § = 0, we use the
integration of Equation [13] on{ = O, and substitute [23], [ 24]
and [ 28],

© ® N
_ | oude oo 2 3 2
x _J[- 2 = J[-[aql + (qII +a; + GI /2)1dw
O O g [ 29]
P ®
B e R (N +o® (6. + (8 8_qg._)ldy
P T I IT I°T
q W,
o

The boundary conditions for the case of a constant pressure

camber foil are as follows: On the foil, from [28]

Ao
@y = 5 7 2 s
a2q_ + o®(2q__ + 29 %) = X [30a]
I TT I 5 >
a? _ A2
or A1 I
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Similarly on the cavity

o o -
12 17 = -
at X = , g. = 0 s q.. = 0 [30b]

The value of gq_ and q at x = ® are not zero in cascades de-

I IT
pending on the mass continuity, and the condition at x = -*. On

the wake, the pressure is assumed to be the same as that at x = «

(Tulin 1964) or
aqp + o (app +a7/2) = aq,, +dq,
Or  dp = Qg 5 Gpp = Gz -~ Gy /2 (30c]

where ¢, and gz can be determined later.

From [ 23], [26] and [10]

2 2 _ 2 — o) 2 ) o) .
adp + o (qII + dp Ve eI /2) = {a ;T ( 7t IqI)} tan v
8 =a, coty (31]
2 cot? vy
eII = -q,, |1+ ——5——)cot Y + q,, cot v [32]

The first order solution for this problem is given by

Yim (1967). We write down the solution here
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O PN CO NP €Y

- 1V

(a_ +¢C)( - a)
1 o)
- H[(% } qml) log (as + C)C

1 k1 1
2 7 Q) 108 a_ +¢ * €J+ T e

- igq,, coty (331
where

1+q, =q(x ==) cos 8 + 0(cf) [34]

and the superscript (1) denotes the first order quantities.

15-v
wle © )= 1 (35]
-a
o
(1) (o =) dx
°p " = & @
© -a
O B
< (§-al)(a +§)
_ (0 - *) g _ 0 S
= 2 cos ¥ Wc(l) > Ay log (as m g) g + g
o)
+-(%-- qu log E E + c(l)w d,, cot f} . St
8, * 1 - 26 sin vy + &%

(36]
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«Q
N
il
Q
I
>
)
w
—~1
L3

The second order solution can be obtained in a similar way

Q)
[ O]

for the first order solution. From the boundary conditions

on ¢ = 0, [30a], [30p], [30c], (311 and [32], we obtain

+ 1(ab. + o?6

Q(g)(c) = aq; + g I 17)

IT

(s (a_ +C)(C - )
) (E“T‘qw 08 T a v CXC
A%
+(§—T—qw :Logaog—_i_g-+g1£ + 4,
Q’qulz
- i {ém - (1 + cotzvi} cot v (38]

where q, = 01 +—a?qa - Gngg/?-

The second order 1ift coefficient is
=0—X+O(a3)=0(1) {39]

A superscript (2) represents the quantity correct up to the second

order.
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Here we cannot deal with simplified parameters as in the
case of the first order solution where all the physical quanti-

ties are divided by C_, but C

L L should be given in addition to
ao, and a; which are related to the solidity and the cavity

length through [6] and [29], namely

Hence, the solidity 1s

0(2)/(2w) =o9(-a_,0) 1-)2/2 ¢ p- (1L - x/2) [ 10]

The cavity length 1is

&(g) =x(§ =a,n =0) =9(a,0) (l - %
=o(-az,0) (1 - % + % - %J ©(-a ,0) Lu1]
or from [39]
CL
®(-as,0) = ©(ay,0) + 7§~m(—ao,o) + 0(d®) Li2]
from which as will be determined.
(1)
(2), (2) 1 1 - g/2 "
138 - by (3232 (43

at x = -». Equations [11] and [38] may be combined to give
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)= 0 (uy]

Thus we have two simultaneous equations; the real and the

imaginary parts of (427, from which we can obtain q, and o -

n4qm

for a given set of v, C ao, and a; with as from (427,

L}

In the results of the first order, we notice that ¢ and a,
are much smaller than CL for 2/¢c > 1.25, especially in the cases
of large stagger angles or high solidities where the nonlinear
effect is large. 1In addition, the influence due to the differ-
ence 1n ag between the theories of the first order and the second
order does not seem to affect physical quantities such as 1ift
and drag coefficients too much, since even complete neglect of
this fact in the theory of an isolated supercavitating foil
leads to good agreement in the 1ift coefficients not only with

the case of the other model but also with the experiments

(Hsu 1966).

From [16] and [24] the drag coefficient correct up to the

second order is

-a

c () _ (o =) otael(g,o) + ot {8, ,(5,0) + 8.(5,0)q.(5,0)}]
D (2 1 + 2aq;
O
« _d_@_d(_g;_@ ge [u5]

This can be computed by a numerical integration as in the first

order theory.
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et of data v

r3 CL}

[}

Thus, for a given ao, and a,; we can ob-
tain the solidity, the cavity length, the parameter az from Equa-
tions [ 403, (411, [42) ang [€6]. Then we find g and o-¢® /2 from
L44]. Using these results we can obtain CD(Q) from [L45]. The
process of calculation is exactly the same as in the case of the

first order theory (Yim 1967). Thus we can write

2

Q(e)(g:O:CL) =Q(l) (Q:G "02_3 CL‘§+)}‘;“) [461

Hence from [40] and [45]

(2) (1)
“ (6,0.) = |1+ % “D B - S
P ] = - K] - = - 5
CL L 2 CL 2 L 2 2
L (1)
A D ,
- 35 (0,Cp) La7]
L
The first order drag is represented (Yim 1967) in the
form of
BECONNCY
D D g c ey
e Rl -‘
c.? c.? \"L
L L
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L (1
and many curves of C ( )/C 3

o]
]

ve

D L “
solidities c¢/d and stagger angles Y. Since

S G/CL are given for different

(1) (1) ol
2 S o P Y s M
RN 2 7L e .2 # a2 a7
CL(CL “2‘+?) L -5 +5
Equation [45] can be rewritten as
(2) (1) (1)
°p e e )i M qel Fe y rD o e
C 3 O} L}d}r}/ - 2 C 2 (CL 2CL)d’rY 2 C 5 (C 2 d 2 rY
L L L L
2 ; ~ (1)
A )VD o c 3
- — , =, vl|+ 0(c®)
(2cL 2C.| ;2 |Cp @
L
(1) (1)
CD o o c ’CL \CD g ¢ \ \
=—*(c“-f’a""v+l?'0) = |eoa |t o)
cIf I L Cr L

[49]
Once we have the result of the first order theory, Equation [49]
furnishes an easy estimation of a second order correction. As an

example, the case of vy = 60° is shown in Figure 2.
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DISCUSSION OF RESULTS AND THE APPLICATION IN THE
SECOND ORDER CORRECTION OF FLOW FOR A
SUPERCAVITATING CASCADE OF FLAT PLATE FOILS

The solutions for the flow due to a supercavitating cascade
of flat plate folls are known both for the nonlinear theory
‘ (Betz and Peterson (1932)) in the case of infinite cavities and
for linear theory (Cohen and Sutherland (1958)). For the linear

theory, the solution can be written

Q(l) = Q(rY: C/d: Q, 0) EBO]

where o represents the angle of attack. As explained in the
previous section, 1f we neglect qml8 term in the condition x = %,

Equation [32], the second order solution would be

b_J
()
(o2
'_1
[

)(W: c/d, a, 0 - o /2)

The 1ift coefficient can be written

| P -P
C, = L =Re% _— %% aw
%pUZC E'U‘3

From [1], [2], [23] andg [28]
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cp(>(c=c:) , 2 )
) 1 aqp +d g + a7 g o
A -3 AN 1 + 2aq. (1+ag,) aw
C I
(@]
®(x=c)
1
:C(E) g - 2 [qu+or.2qII] dep
O
1 o -C (1)
T.
=c(l) {O-ECL(% c/d, a, o —68/2)} 1+ 5
(1)
(1) (1) (7~ L 7
= Cp (6, ¢/d, a, o - o /2) + CL > +t 5
+ 0(a)® [52]

where the simplicity arises because of the cancellaticn of ¢®q.?.
Irr fact, in the case of the 1solated supercavitating hydrofoil:
Tulin (196L4) developed a second order theory like tris, ard

Heu (1966) verified that it was a good approximation for a norn-
linear thecry and the experimental results. laxirg the slope from
figures in the paper by Cohen and Sutherland (1958) arnd usirg
the results of the paper by Acosta (1960), a second crder cor-
rection utilizing Equation [52] is made in Figure 3. This zeens

2 term for our practical

to justify the negligence of the Qor
second order correction. For the case of small ¢ the gecord

term in (52] mainly contributes to the second order ag ir the
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case of an isolated foil (Hsu 1966). When ¢ is fairly large and

either the solidity or the stagger angle is large, the large

slope of C_ curve versus ¢, or the first term contributes a

great dealLto the second order correction.

In general the first order problem is much simpler and
serves to understand the physical behavior and the dependence on
parameters. In fact, the two-dimenslonal approximation, the
neglect of viscosity or the approximated mathematical model may
already involve too severe approximations. However, it should
be admitted that not only is 1t mathematically interesting, but
that also our physical understanding becomes clearer when we
possess the nonlinear or the second order solution. Besides, if
the second order correction is so simple as [49] or [52], there
is no reason why we should not utilize it regularly in the de-

sign of supercavitating stages.
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FIGURE 2 - RELATIONS BETWEEN DRAG COEFFICIENTS, LIFT COEFFICIENTS
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FIGURE 3 - LIFT COEFFICIENT VS SOLIDITY FOR A FULLY CAVITATING ELAT
PLATE CASCADE WITH a=6°, y=60°



